Skip to main content

Вынесение множителя за скобки

• Демо - режим •
1
2
3
4
5
6
7
8
9
10

В демонстрационном режиме вы можете решить до 10 задач в день бесплатно.
После регистрации вы получите неделю бесплатного доступа ко всем разделам сайта!

 
 
Теория :: Пример

Запишите выражение, полученное после вынесения общего множителя за скобки:
 

-36x^{\,5}y^{\,3}+27w^{\,5}+54w^{\,9}x^{\,4}y^{\,3}=-9\,\big(
4x^5y^3-3w^5-6w^9x^4y^3
\big)
Теория :: Решение

Вынести за скобки множитель -9 для выражения -36x^{\,5}y^{\,3}+27w^{\,5}+54w^{\,9}x^{\,4}y^{\,3} означает поделить каждый член этого выражения на -9{\small .} Поэтому:

-36x^{\,5}y^{\,3}+27w^{\,5}+54w^{\,9}x^{\,4}y^{\,3}=\color{red}{-9}\left(-\displaystyle\frac{36x^{\,5}y^{\,3}}{\color{red}{-9}}+\displaystyle\frac{27w^{\,5}}{\color{red}{-9}}+\displaystyle\frac{54w^{\,9}x^{\,4}y^{\,3}}{\color{red}{-9}}\right) {\small .}

Поделив каждый член на \color{red}{-9} {\small ,} получаем:

-\displaystyle\frac{36x^{\,5}y^{\,3}}{\color{red}{-9}}=4x^{\,5}y^{\,3} {\small ,}

\displaystyle\frac{27w^{\,5}}{\color{red}{-9}}=-3w^{\,5} {\small ,}

\displaystyle\frac{54w^{\,9}x^{\,4}y^{\,3}}{\color{red}{-9}}=-6w^{\,9}x^{\,4}y^{\,3}

и

\color{red}{-9}\left(-\displaystyle\frac{36x^{\,5}y^{\,3}}{\color{red}{-9}}+\displaystyle\frac{27w^{\,5}}{\color{red}{-9}}+\displaystyle\frac{54w^{\,9}x^{\,4}y^{\,3}}{\color{red}{-9}}\right)=\color{red}{-9}\left(4x^{\,5}y^{\,3}-3w^{\,5}-6w^{\,9}x^{\,4}y^{\,3} \right) {\small .}

Таким образом,

-36x^{\,5}y^{\,3}+27w^{\,5}+54w^{\,9}x^{\,4}y^{\,3}=-9(4x^{\,5}y^{\,3}-3w^{\,5}-6w^{\,9}x^{\,4}y^{\,3}) {\small .}

Ответ: 4x^{\,5}y^{\,3}-3w^{\,5}-6w^{\,9}x^{\,4}y^{\,3}{\small .}

Понятно, дальше  
Учебные блоки

1 /  7

Было проблемных задач: 0
0 из 100