Skip to main content

Теория: Метод интервалов и простейшие рациональные неравенства

Задание

Выберите верные знаки и обозначения точек на числовой прямой при решении неравенства методом интервалов:

\(\displaystyle \frac{x-1}{x-3} \ge 0{\small .}\)

Решение

Найдем корни числителя \(\displaystyle x-1 \) и знаменателя \(\displaystyle x-3{\small : } \)

\(\displaystyle x-1=0 \) или \(\displaystyle x-3=0{ \small ,} \)

\(\displaystyle x=1 \) или \(\displaystyle x=3{\small .} \)


Поскольку знак неравенства нестрогий, то 

  • все нули числителя, которые не обращают в ноль знаменатель, обозначаются закрашенными;
  • все нули знаменателя всегда обозначаются выколотыми.

Так как \(\displaystyle x=1\) обращает в ноль числитель и не обращает в ноль знаменатель, то она обозначается закрашенной. Поскольку \(\displaystyle x=3 \) обращает в ноль знаменатель, то она обозначается выколотой:

 

Получили три интервала:

\(\displaystyle (-\infty;1){ \small ,} \, (1;3)\) и \(\displaystyle (3;+\infty){\small .}\)

Определим знак функции \(\displaystyle f(x)=\frac{x-1}{x-3}\) на каждом из интервалов. Для этого вычислим значение функции \(\displaystyle f(x)=\frac{x-1}{x-3}\) в произвольно выбранной точке интервала.

На интервале \(\displaystyle (-\infty;1) \) функция \(\displaystyle f(x) \) положительна

Для интервала \(\displaystyle (-\infty;1)\) выберем \(\displaystyle x=0 \in (-\infty;1){\small .}\) Определим знак значения функции в точке \(\displaystyle x=0{ \small :}\)

\(\displaystyle f(0)=\frac{0-1}{0-3}>0{\small .}\)

Пишем знак плюс в интервале \(\displaystyle (-\infty;1){\small :}\)

На интервале \(\displaystyle (1;3) \) функция \(\displaystyle f(x) \) отрицательна

Для интервала \(\displaystyle (1;3)\) выберем \(\displaystyle x=2 \in (1;3){\small .}\) Определим знак значения функции в точке \(\displaystyle x=2 { \small :}\)

\(\displaystyle f(2)=\frac{2-1}{2-3}<0{\small .}\)

Пишем знак минус в интервале \(\displaystyle (1;3){\small :}\)

На интервале \(\displaystyle (3;+\infty) \) функция \(\displaystyle f(x) \) положительна

Для интервала \(\displaystyle (3;+\infty)\) выберем \(\displaystyle x=4 \in (3;+\infty){\small .}\) Определим знак значения функции в точке \(\displaystyle x=4 { \small :}\)

\(\displaystyle f(4)=\frac{4-1}{4-3}>0{\small .}\)

Пишем знак плюс в интервале \(\displaystyle (3;+\infty){\small :}\)

Таким образом, получили следующие знаки на интервалах \(\displaystyle (-\infty;1){ \small ,} \, (1;3)\) и \(\displaystyle (3;+\infty){\small :}\)