Skip to main content

Теория: Умножение дробей

Задание

Найти произведение дробей (в ответе записать несократимую дробь):

 

\(\displaystyle \frac{2}{21}\cdot\frac{3}{10}\,=\)
 

 

Решение

Правило

Для того, чтобы перемножить две дроби, надо числитель перемножить с числителем и знаменатель со знаменателем.

\(\displaystyle \frac{2}{21}\cdot \frac{3}{10}=\frac{2\cdot 3}{21\cdot 10}=\frac{6}{210}\).

 

Так как

\(\displaystyle НОД(2\cdot 3, 21\cdot 10)=2\cdot 3=6\),

 

то результат умножения \(\displaystyle \frac{2\cdot 3}{21\cdot 10}\) - сократимая дробь (см. тему НОД и разложение на простые множители или НОД и алгоритм Евклида).

Поделим числитель и знаменатель дроби \(\displaystyle \frac{2\cdot 3}{21\cdot 10}\) на \(\displaystyle НОД(2\cdot 3, 21\cdot 10)=6\):

 

\(\displaystyle \frac{2\cdot 3}{21\cdot 10}=\frac{6}{210}=\frac{6:{\bf 6}}{210:{\bf 6}}=\frac{1}{35}\).

 

Ответ: \(\displaystyle \frac{1}{35}\).

Замечание / комментарий

Найдем несократимую дробь, равную произведению дробей \(\displaystyle \frac{2}{21}\cdot \frac{3}{10}\), раскладывая каждый числитель и знаменатель на простые множители.

\(\displaystyle 21=3\cdot 7;\)

\(\displaystyle 10=2\cdot 5.\)

Тогда сократим общие простые множители в наименьших степенях:

\(\displaystyle \frac{2}{21}\cdot \frac{3}{10}=\frac{2\cdot 3}{21\cdot 10}=\frac{2\cdot 3}{ 3\cdot 7\cdot 2 \cdot 5}=\frac{{\not 2}\cdot {\not 3}}{{\not 3}\cdot 7\cdot {\not 2} \cdot 5}=\frac{1}{7\cdot 5}=\frac{1}{35}\).